KNOWLEDGE: K1.01 [2.4/2.8] QID: B499 (P497)

Which one of the following comparisons will result in a <u>higher</u> probability of brittle fracture of the reactor vessel?

- A. A high reactor gamma flux rather than a high neutron flux
- B. A high reactor vessel material strength rather than a high material ductility
- C. A high reactor coolant oxygen content rather than a low oxygen content
- D. A rapid 100°F reactor cooldown at a high temperature rather than a low temperature

ANSWER: B.

TOPIC: 293010

KNOWLEDGE: K1.01 [2.4/2.8] QID: B2499 (P2496)

Brittle fracture of a low-carbon steel is more likely to occur when the temperature of the steel is _____ the nil ductility temperature, and will normally occur when the applied stress is ____ the steel's yield strength (or yield stress).

- A. greater than; greater than
- B. greater than; less than
- C. less than; greater than
- D. less than; less than

KNOWLEDGE: K1.02 [2.2/2.7] QID: B1299 (P1896)

Brittle fracture of the reactor vessel (RV) is most likely to occur during a _____ of the reactor coolant system (RCS) when RCS temperature is _____ the RV reference temperature for nil-ductility transition (RT_{NDT}).

A. cooldown; above

B. heatup; above

C. cooldown; below

D. heatup; below

ANSWER: C.

TOPIC: 293010

KNOWLEDGE: K1.02 [2.2/2.7] QID: B1500 (P697)

The reference temperature for nil-ductility transition (RT_{NDT}) is the temperature above which...

- A. a large compressive stress can result in brittle fracture.
- B. a metal exhibits more ductile tendencies.
- C. the probability of brittle fracture increases.
- D. no appreciable deformation occurs prior to failure.

TOPIC: 293010 KNOWLEDGE: K1.02 [2.2/2.7] B2099 (P2096) QID: Which one of the following will prevent brittle fracture failure of a reactor vessel? A. Manufacturing the reactor vessel from low carbon steel B. Maintaining reactor vessel pressure below the maximum design limit C. Operating above the reference temperature for nil-ductility transition (RT_{NDT}) D. Maintaining the number of reactor vessel heatup/cooldown cycles within limits ANSWER: C. TOPIC: 293010 KNOWLEDGE: K1.02 [2.2/2.7] B2199 (P2295) QID: Brittle fracture of the reactor vessel (RV) is <u>least</u> likely to occur during a of the RV when RV temperature is _____ the reference temperature for nil-ductility transition (RT_{NDT}) . A. cooldown; above B. heatup; above C. cooldown; below D. heatup; below ANSWER: B.

KNOWLEDGE: K1.02 [2.2/2.7] QID: B2299 (P996)

The nil-ductility transition temperature is that temperature...

- A. below which vessel failure is imminent.
- B. above which vessel failure is imminent.
- C. below which the probability of brittle fracture significantly increases.
- D. above which the probability of brittle fracture significantly increases.

ANSWER: C.

TOPIC: 293010

KNOWLEDGE: K1.02 [2.2/2.7] QID: B2699 (P597)

The nil-ductility transition temperature of the reactor vessel (RV) is the temperature...

- A. above which the RV metal will elastically deform as RCS pressure decreases.
- B. above which the RV metal loses its ability to elastically deform as RCS pressure increases.
- C. below which the RV metal will elastically deform as reactor coolant system (RCS) pressure decreases.
- D. below which the RV metal loses its ability to elastically deform as RCS pressure increases.

KNOWLEDGE: K1.04 [2.9/3.2] QID: B100 (P96)

The likelihood of brittle fracture failure of the reactor vessel is reduced by...

- A. reducing gamma flux exposure.
- B. reducing vessel temperature.
- C. reducing vessel pressure.
- D. increasing vessel age.

ANSWER: C.

TOPIC: 293010

KNOWLEDGE: K1.04 [2.9/3.2] QID: B300 (P1897)

Which one of the following will apply a compressive stress to the outside wall of the reactor vessel?

- A. Neutron embrittlement of the reactor vessel
- B. Increasing reactor coolant system (RCS) pressure
- C. Performing an RCS cooldown
- D. Performing an RCS heatup

KNOWLEDGE: K1.04 [2.9/3.2] QID: B398 (P397)

Brittle fracture of the reactor coolant pressure boundary is most likely to occur at...

- A. 400°F, 10 psig.
- B. 400°F, 400 psig.
- C. 120°F, 10 psig.
- D. 120°F, 400 psig.

ANSWER: D.

TOPIC: 293010

KNOWLEDGE: K1.04 [2.9/3.2] QID: B399 (P399)

The total stress on the reactor vessel inner wall is greater during cooldown than heatup because...

- A. thermal heatup stress totally offsets pressure stress at the inner wall.
- B. both pressure stress and thermal cooldown stress are tensile at the inner wall.
- C. the tensile thermal cooldown stress at the inner wall is greater in magnitude than the compressive pressure stress at the same location.
- D. thermal cooldown stress and thermal heatup stress are both tensile at the inner wall, but cooldown stress is greater in magnitude.

KNOWLEDGE: K1.04 [2.9/3.2] QID: B400 (P398)

The probability of reactor vessel brittle fracture is decreased by minimizing...

- A. oxygen content in the reactor coolant.
- B. operation at high temperatures.
- C. the time taken to cool down the reactor coolant system.
- D. the amount of copper manufactured into the reactor vessel.

ANSWER: D.

TOPIC: 293010

KNOWLEDGE: K1.04 [2.9/3.2] QID: B899 (P97)

Pressure stress on the reactor vessel wall is...

- A. compressive across the entire wall.
- B. tensile across the entire wall.
- C. tensile on the inner wall, compressive on the outer wall.
- D. compressive on the inner wall, tensile on the outer wall.

KNOWLEDGE: K1.04 [2.9/3.2] QID: B1899 (P1597)

Which one of the following increases the probability of brittle fracture of a pressure vessel wall?

- A. Using materials fabricated from stainless steel rather than carbon steel
- B. A compressive stress rather than a tensile stress
- C. A high reactor coolant temperature rather than a low reactor coolant temperature
- D. Performing a 100°F/hr cooldown rather than a 100°F/hr heatup

ANSWER: D.

TOPIC: 293010

KNOWLEDGE: K1.04 [2.9/3.2]

QID: B2300

A reactor plant heatup is in progress. The thermal stress applied to the reactor vessel is...

- A. tensile across the entire wall.
- B. tensile at the inner wall and compressive at the outer wall.
- C. compressive across the entire wall.
- D. compressive at the inner wall and tensile at the outer wall.

ANSWER: D.

(. *D*.

KNOWLEDGE: K1.04 [2.9/3.2] QID: B2399 (P2397)

Reactor coolant system pressure-temperature limit curves are derived by using a conservative value for the reactor vessel reference temperature for nil ductility transition (RT_{NDT}).

Early in core life, the assumed value of RT_{NDT} is ______ than actual RT_{NDT} ; and actual RT_{NDT} is verified periodically over core life by ______.

- A. higher; removing and testing irradiated specimens of reactor vessel material
- B. higher; inservice inspection and analysis of the reactor vessel wall
- C. lower; removing and testing irradiated specimens of reactor vessel material
- D. lower; inservice inspection and analysis of the reactor vessel wall

ANSWER: A.

TOPIC: 293010

KNOWLEDGE: K1.04 [2.9/3.2] QID: B2500 (P2497)

Which one of the following comparisons will result in a higher probability of brittle fracture failure of the reactor vessel?

- A. A feedwater pH of 8.5 rather than 9.0
- B. A high feedwater oxygen content rather than a low oxygen content
- C. A 50°F/hr reactor cooldown rather than a 100°F/hr heatup
- D. A high gamma flux rather than a high neutron flux

KNOWLEDGE: K1.04 [2.9/3.2] B2700 (P1696) QID:

Which one of the following comparisons increases the probability of brittle fracture of a reactor pressure vessel wall?

- A. Performing a 50°F/hr cooldown at 1600 psia rather than a 50°F/hr cooldown at 1200 psia.
- B. A compressive stress rather than a tensile stress across the vessel wall.
- C. A high reactor coolant temperature rather than a low reactor coolant temperature.
- D. Changing wall design to increase toughness while maintaining the same strength.

ANSWER: A.

TOPIC: 293010

KNOWLEDGE: K1.04 [2.9/3.2] B2999 (N/A) OID:

Which one of the following operating limitations is designed to prevent brittle fracture of the reactor vessel?

- A. Maximum setpoint for main steam safety valves
- B. Maximum chloride concentration in the reactor coolant
- C. Maximum reactor pressure versus vessel temperature during heatup
- D. Maximum differential temperature between the vessel steam dome and the bottom head

KNOWLEDGE: K1.04 [2.9/3.2] QID: B3700 (P3698)

A reactor is shutdown with the shutdown cooling system maintaining reactor coolant temperature at 240°F immediately following an uncontrolled cooldown from 500°F. If reactor coolant temperature is held constant at 240°F, which one of the following describes the change in tensile stress on the inner wall of the reactor vessel (RV) over the next few hours?

- A. Decreases, because the temperature gradient across the RV wall will decrease.
- B. Increases, because the temperature gradient across the RV wall will decrease.
- C. Decreases, because the inner RV wall temperature will approach the nil-ductility transition temperature.
- D. Increases, because the inner RV wall temperature will approach the nil-ductility transition temperature.

ANSWER: A.

TOPIC: 293010

KNOWLEDGE: K1.05 [2.5/2.8] QID: B299 (P1997)

Which one of the following describes the effect of fast neutron irradiation on a reactor pressure vessel?

- A. Increased fatigue crack growth rate
- B. Increased plastic deformation prior to failure
- C. Increased ductility
- D. Increased nil-ductility reference transition temperature

KNOWLEDGE: K1.05 [2.5/2.8] B500 (P499) QID:

Which one of the following types of radiation most significantly reduces the ductility of the metal of a reactor pressure vessel?

- A. Beta
- B. Thermal neutrons
- C. Gamma
- D. Fast neutrons

ANSWER: D.

TOPIC: 293010

KNOWLEDGE: K1.05 [2.5/2.8] B599 (P298) QID:

Prolonged exposure of a reactor vessel to a fast neutron flux will cause the reference temperature for nil-ductility transition (RT_{NDT}) to...

- A. decrease due to the propagation of existing flaws.
- B. increase due to the propagation of existing flaws.
- C. decrease due to changes in the material properties of the vessel wall.
- D. increase due to changes in the material properties of the vessel wall.

KNOWLEDGE: K1.05 [2.5/2.8] QID: B1100 (P1100)

Two identical reactors have been in operation for the last 10 years. Reactor A has experienced 40 heatup/cooldown cycles with an average power capacity of 50%. Reactor B has experienced 30 heatup/cooldown cycles with an average power capacity of 60%.

Which reactor will have the lowest reactor vessel nil-ductility transition temperature?

- A. Reactor A due to the lower average power capacity.
- B. Reactor A due to the greater number of heatup/cooldown cycles.
- C. Reactor B due to the higher average power capacity.
- D. Reactor B due to the fewer number of heatup/cooldown cycles.

ANSWER: A.

TOPIC: 293010

KNOWLEDGE: K1.05 [2.5/2.8] QID: B1200 (P1898)

Which one of the following is the major contributor to embrittlement of the reactor vessel?

- A. High-energy fission fragments
- B. High operating temperature
- C. High-energy gamma radiation
- D. High-energy neutron radiation

KNOWLEDGE: K1.05 [2.5/2.8] QID: B1800 (P1699)

Two identical reactors have been in operation for the last 10 years. Reactor A has experienced 30 heatup/cooldown cycles with an average power capacity of 60%. Reactor B has experienced 40 heatup/cooldown cycles with an average power capacity of 50%.

Which reactor will have the lowest reactor vessel nil-ductility transition temperature?

- A. Reactor A due to the higher average power capacity
- B. Reactor A due to the fewer number of heatup/cooldown cycles
- C. Reactor B due to the lower average power capacity
- D. Reactor B due to the greater number of heatup/cooldown cycles

ANSWER: C.

TOPIC: 293010

KNOWLEDGE: K1.05 [2.5/2.8] QID: B1900 (P899)

After several years of operation the maximum allowable stress to the reactor pressure vessel is more limited by the inner wall than the outer wall because...

- A. there is a temperature gradient across the reactor pressure vessel wall.
- B. the inner wall has a smaller surface area than the outer wall.
- C. the inner wall experiences more neutron-induced embrittlement than the outer wall.
- D. the inner wall experiences more tensile stress than the outer wall.

KNOWLEDGE: K1.05 [2.5/2.8] QID: B1999 (P998)

Prolonged exposure to _____ will cause nil-ductility transition temperature of the reactor vessel to

- A. neutron radiation; increase
- B. neutron radiation; decrease
- C. normal operating pressure; increase
- D. normal operating pressure; decrease

ANSWER: A.

TOPIC: 293010

KNOWLEDGE: K1.05 [2.5/2.8] QID: B2100 (P2098)

Two identical reactors have been in operation for the last 10 years. Reactor A has experienced 30 heatup/cooldown cycles and has an average power capacity of 60%. Reactor B has experienced 40 heatup/cooldown cycles and has an average power capacity of 50%.

Which reactor will have the highest reactor vessel nil-ductility transition temperature?

- A. Reactor A due to the fewer number of heatup/cooldown cycles
- B. Reactor A due to the higher average power capacity
- C. Reactor B due to the greater number of heatup/cooldown cycles
- D. Reactor B due to the lower average power capacity

KNOWLEDGE: K1.05 [2.5/2.8] QID: B2600 (P2599)

Two identical reactors are currently shut down for refueling. Reactor A has an average lifetime power capacity of 60% and has been operating for 15 years. Reactor B has an average lifetime power capacity of 75% and has been operating for 12 years.

Which reactor, if any, will have the lowest reactor vessel nil ductility transition temperature?

- A. Reactor A due to the lower average lifetime power capacity.
- B. Reactor B due to the higher average lifetime power capacity.
- C. Both reactors will have approximately the same nil ductility transition temperature because each core has produced approximately the same number of fissions.
- D. Both reactors will have approximately the same nil ductility transition temperature because fast neutron irradiation in a shut down core is not significant.

ANSWER: C.

TOPIC: 293010

KNOWLEDGE: K1.05 [2.5/2.8] QID: B2800 (P2799)

Two identical reactors have been in operation for the last 10 years. Reactor A has experienced 30 heatup/cooldown cycles and has an average power capacity of 60%. Reactor B has experienced 20 heatup/cooldown cycles and has an average power capacity of 80%.

Which reactor will have the highest reactor vessel nil-ductility transition temperature and why?

- A. Reactor A due to the lower average power capacity
- B. Reactor A due to the greater number of heatup/cooldown cycles
- C. Reactor B due to the higher average power capacity
- D. Reactor B due to the fewer number of heatup/cooldown cycles

KNOWLEDGE: K1.05 [2.5/2.8] QID: B2900 (P2298)

Two identical reactors have been in operation for the last 10 years. Reactor A has experienced 40 heatup/cooldown cycles and has an average power capacity of 50%. Reactor B has experienced 30 heatup/cooldown cycles and has an average power capacity of 60%.

Which reactor will have the highest reactor vessel nil-ductility transition temperature?

- A. Reactor A due to the greater number of heatup/cooldown cycles
- B. Reactor A due to the lower average power capacity
- C. Reactor B due to the fewer number of heatup/cooldown cycles
- D. Reactor B due to the higher average power capacity

ANSWER: D.

TOPIC: 293010

KNOWLEDGE: K1.05 [2.5/2.8] QID: B3000 (P2698)

Two identical reactors are currently shut down for refueling. Reactor A has achieved an average lifetime power capacity of 60% while operating for 15 years. Reactor B has achieved an average lifetime power capacity of 60% while operating for 12 years.

Which reactor, if any, will have the lowest reactor vessel nil ductility transition temperature?

- A. Reactor A because it has produced the greater number of fissions.
- B. Reactor B because it has produced the fewer number of fissions.
- C. Both reactors will have approximately the same nil ductility transition temperature because they have equal average lifetime power capacities.
- D. Both reactors will have approximately the same nil ductility transition temperature because the fission rate in a shut down core is not significant.

KNOWLEDGE: K1.05 [2.5/2.8] QID: B3200 (P3197)

A reactor is shut down for refueling following 18 months of operation at an average power level of 85%. During the shutdown, a reactor vessel metal specimen is removed from the reactor vessel for testing. The testing determines that the nil-ductility transition (NDT) temperature of the specimen has decreased from 44°F to 42°F since the last refueling.

Which one of the following conclusions is warranted?

- A. The test results are credible and the reactor vessel is <u>more</u> likely to experience brittle fracture now than after the last refueling.
- B. The test results are credible and the reactor vessel is <u>less</u> likely to experience brittle fracture now than after the last refueling.
- C. The test results are questionable because the specimen NDT temperature would <u>not</u> decrease during the described 18-month period of operation.
- D. The test results are questionable because the specimen NDT temperature would decrease by more than 2°F during the described 18-month period of operation.

KNOWLEDGE: K1.05 [2.5/2.8] QID: B3600 (P3598)

A reactor is shut down for refueling following 18 months of operation at an average power level of 85%. During the shutdown, a reactor vessel metal specimen is removed from the reactor vessel for testing. The testing indicates that the nil-ductility transition (NDT) temperature of the specimen has decreased from 44°F to 32°F since the last refueling.

Which one of the following conclusions is warranted?

- A. The test results are credible and the reactor vessel is <u>more</u> likely to experience brittle fracture now than after the last refueling.
- B. The test results are credible and the reactor vessel is <u>less</u> likely to experience brittle fracture now than after the last refueling.
- C. The test results are questionable because the actual specimen NDT temperature would <u>not</u> decrease during the described 18-month period of operation.
- D. The test results are questionable because the actual specimen NDT temperature would decrease by much <u>less</u> than indicated by the test results.

KNOWLEDGE: K1.05 [2.5/2.8] QID: B3900 (P3898)

Two identical reactors are currently shut down for refueling. Reactor A has an average lifetime power capacity of 90% and has been operating for 10 years. Reactor B has an average lifetime power capacity of 80% and has been operating for 15 years.

Which reactor will have the higher reactor vessel nil ductility transition temperature and why?

- A. Reactor A because it has the higher average lifetime power capacity.
- B. Reactor B because it has the lower average lifetime power capacity.
- C. Reactor A because it has produced significantly less fissions.
- D. Reactor B because it has produced significantly more fissions.